

Incorporation of Imidazolium-based Ionic Liquids in Non-isocyanate Polyurethane Networks

Masoud Ramezanzadeh¹, Udo Kragl^{1,2}

¹ University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18059 Rostock, Germany ² University of Rostock, Department Life, Light & Matter, Albert-Einstein-Str. 25, 18059 Rostock, Germany

Introduction

Over the past few decades, numerous strategies to capture and reduce carbon dioxide have been widely discussed due to rising greenhouse gas emissions. Conversion of CO₂ as a nontoxic, abundant, and inexpensive resource into valuable chemicals is one of the finest routes to overcome this concern. Bio-based cyclic carbonates are one popular group of chemicals that can be prepared from the reaction of CO₂ and renewable resource-based epoxides. Non-isocyanate polyurethane (NIPU) products are one of their outstanding applications, which typically can be obtained by cross-linking multifunctional cyclic carbonates with amines.^[1] Herein, we introduce a novel approach to prepare NIPU networks through the reaction of bio-based cyclic carbonates and amino-terminated poly imidazolium-based ionic liquids derived by means of the multicomponent **poly-Radziszewski** reaction.

CO₂ utilization

oil Cyclic carbonated soybean (CSBO) was prepared by incorporation of CO₂ into epoxidized soybean oil (ESBO) under a TBAB/CaCl₂ catalytic system (Fig. 1).^[2] The cycloaddition reaction was tracked and approved by FT-IR and NMR spectroscopies, as well as GPC, viscosity measurements, ESI-MS, and epoxy content determination.

Poly(IL)s preparation

Two series of **imidazolium-containing** polymeric ionic liquids (PILs) were synthesized via the poly-Radziszewski reaction (Fig. 4).^[3] Accordingly, 1,4butanediamine and 1,6-hexanediamine were employed as precursors with different amine/carbonyl molar ratios to produce PIMC4 and PIMC6 compounds. The formation of imidazolium moieties well as NMR molecular

							was confirmed by FT-IR as well as NMR spectroscopies, and the molecular weight distributions of synthesized PILs were investigated by GPC (Table 2)						
tion)	n M _w η (g/mol) (Pa-s)			\frown	0	0		vCSU) .	
3	1516 0.4067 1587 4.6273			N NI	+ ₂	H ₂ N ⁻	́N	H ₂	- 3 H ₂ O	H ₂ N M	N∕×N∕×	m n n	
5	1654	10.0387	Fig.	Ö Fig. 4: Synthesis of imidazolium-containing PIL's through the poly-Radziszewski reaction.									
C	1740	16.8693		Molar ratio	Mn	Mw	PDI		Molar ratio	Mn	Mw	PDI	
1: Molecular weight and viscosity o at different reaction times.				0.8	27240	276540	10.15		0.8	19860	223260	11.24	
				1.0	13440	39580	2.94		1.0	14725	73400	4.98	
			4	1.2	7980	17000	2.1	9	1.2	8390	18010	2.14	
			M	1.4	6580	12590	1.91	.91Image: Performance of the second seco	1.4	7065	12600	1.78	
				1.6	5800	9170	1.58		1.6	6114	10345	1.69	
				1.8	5400	8410	1.55		1.8	5610	8710	1.55	
				2.0	5060	7800	1.54		2.0	5695	8680	1.52	
				2.2	4760	7380	1.54		2.2	5320	8260	1.55	
		29.6609 1152.6755 1173.6572 1195.6555 1217.6438	Table 2: Molecular weight distributions of PIMs synthesized by varying the amine/carbonyl molar ratio in the monomer feed.										
o 960 980 1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 1220 m/z							NITDLL cynthocic						

In order to synthesis

compounds,

NIPU synthesis

NIPU

[3] J.-P. Lindner, *Macromolecules* **2016**, 49, 2046-2053.

from the Max Planck Institute of Colloids and Interfaces in Potsdam, Germany, for their kind technical assistance with the GPC measurements. The financial support by the State Postgraduate Scholarship Program of Mecklenburg-Vorpommern (LGFG M-V) is gratefully acknowledged.

Scan this for PDF