

Ionic Liquid-based Thermomorphic Solvent Systems for Biocatalytic Reactions

L. - E. Meyer¹, A. Gummesson¹ and J. von Langermann¹

¹University of Rostock, Institute of Chemistry, Albert-Einstein-Straße 3A, 18059 Rostock, Germany

Introduction

Thermomorphic solvent systems (TMS) are specific solvent mixtures that exhibit temperature-dependent miscibility а gap, which allows the utilization of a reversible macroscopic phase change between mono- and multiphasic conditions.[1] For systems with a UCST-type phase behavior, monophasic reaction conditions at higher temperatures and an easy recycling of the biocatalyst after phase separation at lower temperatures

can be achieved (Fig. 1). In this study various ionic liquid/salt/water-mixtures were screened regarding their liquidliquid phase equilibria (cf. Fig. 3) and evaluated with selected biocatalytic reactions. Especially tetrafluoroboratebased ionic liquids show good to excellent catalytic activities and recyclabilities. The resulting hydrophobic solvent systems facilitate high solubilities of the reactants.

IL-based Aqueous Biphasic Systems

The phase behavior of ionic liquid-inorganic salt-water mixtures as IL-based aqueous biphasic systems (IL-ABS) was first investigated in 2003 by ROGERS et al.[2] The interactions of the three components is typically displayed in a ternary phase diagram (Fig. 2). Here the so called binodal curve illustrates the border between the homogenous (1-PS) and the heterogeneous (2-PS) regime.

IL-ABS. C_p = upper critical solution temperature (UCST).

By changing the temperature, it is possible to shift the binodal curve into the homogeneous regime (Fig. 3). With the knowledge of the temperature dependent phase behavior it is possible to separate the biocatalyst from the ILrich phase to reuse it in a new reaction.[3]

Results and Discussion Use of IL-ABS for biocatalytic reactions

In this study, the kinetic resolution reaction of racemic 1-phenylethanol by Candida antarctica lipase B (CalB) was investigated as a model reaction (Fig. 4).

Fig. 4: Enantioselective kinetic resolution reaction

In contrast to classical biphasic systems (Fig. 5) significantly higher reaction rates were obtained with an IL-ABS-system. In addition, higher solubilities of the reactants are possible with thermomorphic solvent systems (TMS) in comparison to aqueous media. The half live stability of CalB in the [Bmim][BF4]-ABS-system is about 30 hours (Fig. 6).

Recycling and IL-TMS-System library

After cooling the [Bmim][BF4]-TMS-system it was possible to reuse the aqueous enzyme-rich phase to perform several recycling runs (Fig. 7). The conversion of the reactions remained high over 3 to 4 runs. After 6 runs a loss of 50 % conversion was observed.

Fig. 7: Results of catalytic recycling (reaction conditions: 30 min per run at 40 °C). runs

Various other ionic liquid/salt/water-mixtures were screened and evaluated regarding their applicability (Table 1).

Table 1: Ranking of different IL-TMS examined in this

no	ionic liquid	secondary solvent	ranking
1	[Bmim][BF ₄]	150 mм NaPi-buffer	++++
2	[Bpy][BF ₄]	233 mм NaPi-buffer	++++
3	[Emim][BF ₄]	567 mм NaPi-buffer	++
4	[Bmim][NO ₃]	350 mм NaPi-buffer	0
5	[Emim][Br]	470 mм NaPi-buffer	0
6	[Bmim][Br]	333 mм NaPi-buffer	0
7	[Bmim][CI]	-	-

++++ indicates that all parameters were accomplished (solubility of the substrate, UCST-type phase behaviour, high reaction rates), ++ indicates an immiscibility of the substrate, 0 indicates a small phase separation after cooling and an immiscibility of the substrate, - indicates that no phase separation occurs at 40 °C.

Conclusion

- > Pyridinium- and imidazolium-based ionic liquids were investigated for the use as thermomorphic solvent systems.
- > An enantioselective model reaction was carried out in IL-based TMS-systems.
- The IL-based TMS-systems facilitate a considerable faster conversion than classical organic biphasic systems.
- The investigation of the recycling of the biocatalyst showed a practically application for three to four times.
- > Further biocatalytic reactions were successfully carried out in thermomorphic solvent systems (data not shown).

Reference

- A. Behr, G. Henze, R. Schomäcker, Adv. Synth. Catal. 2006, 348, 1485–1495.
 K. E. Gutowski, G. A. Broker, H. D. Willauer, J. G. Huddleston, R. P. Swatloski, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc. 2003, 125, 6632.
 J. R. Trindade, Z. P. Visak, M. Blesic, I. M. Marrucho, J. A. P. Coutinho, J. N. C. Lopes, L. P. N. Rebelo, J. Phys. Chem. B. 2007, 111, 4737. [3]

Acknowledgements

Financial support by Bundesministerium für Bildung und Forschung, Germany (project number: 031A123) is gratefully acknowledged

Scan this for PDF!

