

COUPLED TWO REACTOR-CONCEPT FOR AN *IN SITU* - PRODUCT CRYSTALLIZATION IN TRANSAMINASE-CATALYZED REACTIONS

Dennis Hülsewede, Jan-Niklas Dohm, Jan von Langermann

University of Rostock, Institute of Chemistry, Biocatalysis Group, Albert-Einstein-Straße 3a, 18059 Rostock, Germany

Introduction

The unfavorable reaction equilibria of many amine transaminases-catalyzed reaction systems require additional methods to shift the biocatalytic reaction to the product side.^[1] Here we recently presented an alternative, crystallization-based approach to selectively remove the product amine from solution as a sparingly soluble product salt of 3,3-diphenylpropionic acid (3DPPA) (Fig. 1).^[2]

In this concept study we plan to enhance this approach by using a two coupled reactors in a semi-continuous approach for the continuous synthesis of the desired amine.

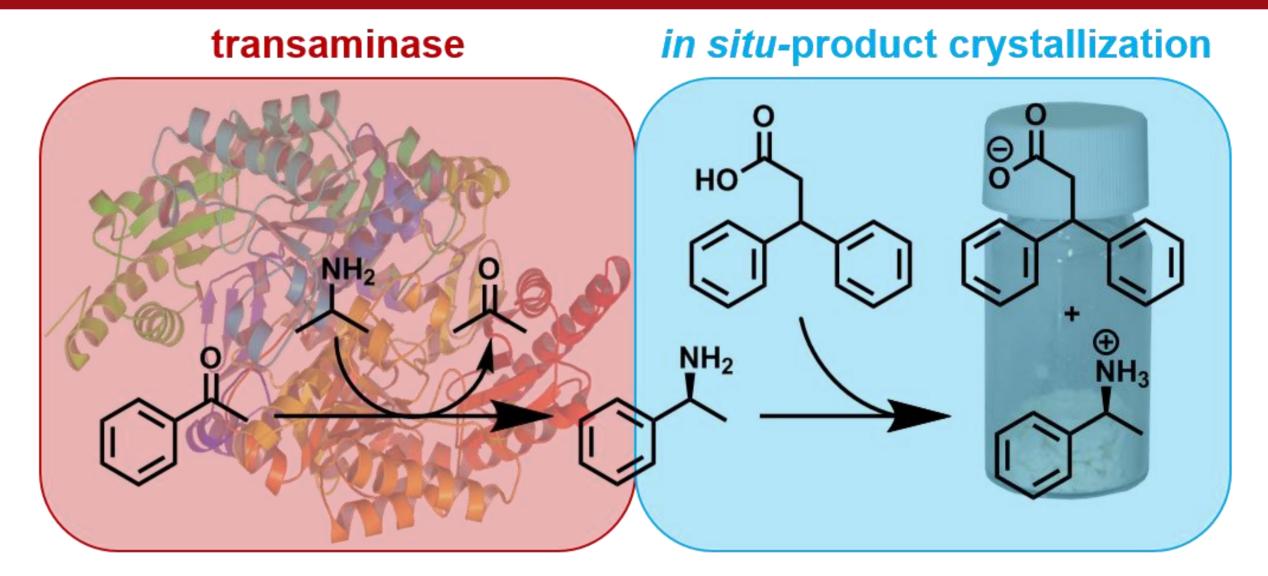
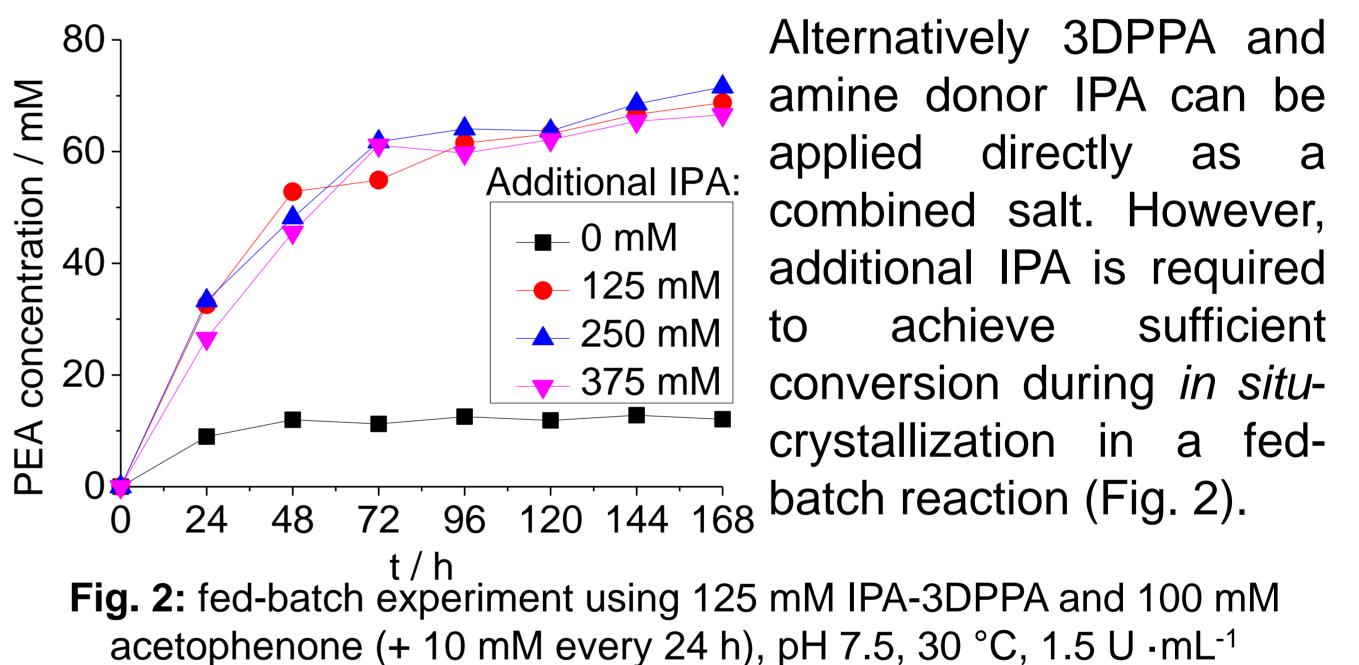


Fig. 1: crystallization-based in situ product removal in an amine transaminase-catalyzed reaction


Results and Discussion

ISPC-

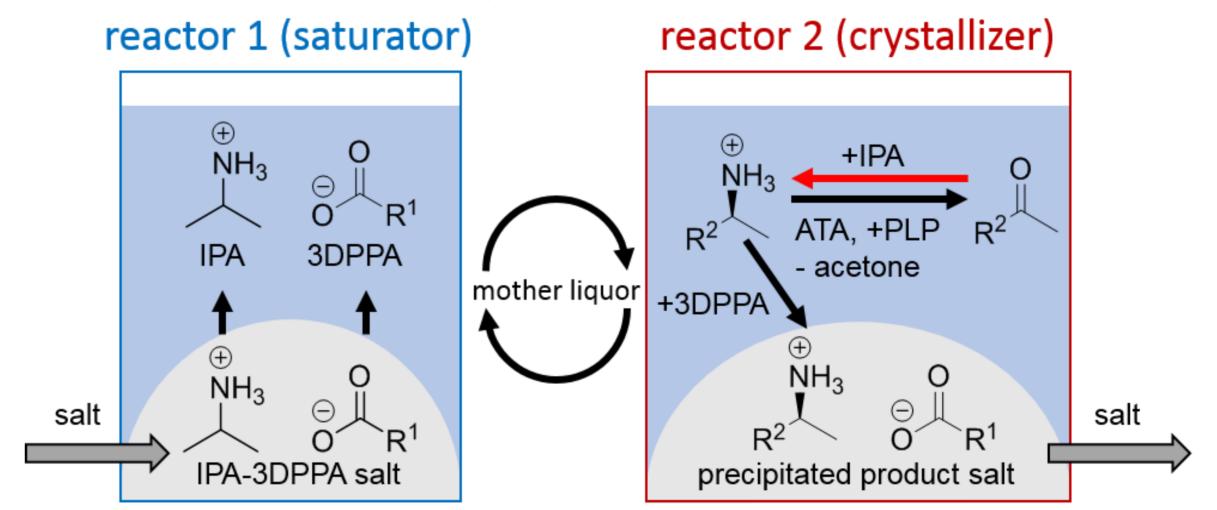
Solubility differences

The main driving force of the *in situ*-product crystallization is the low solubility of the product amine salt (in this case (*S*)-1-phenylethylamine; PEA-3DPPA) and the higher solubility of the amine donor salt (isopropyl amine; IPA-3DPPA). The corresponding solubilities are pH-dependent, but fortunately overlap with the activity maximum of the investigated amine transaminase from *S. pomeroyi* (Tab. 1).

Use of donor amine salt

Tab. 1: pH-dependent solubility in 100 mM phosphate buffer at 30 °C.

рН	IPA-3DPPA	PEA-3DPPA
6	8.57 mM	6.60 mM
7	51.57 mM	6.81 mM
8	61.73 mM	6.29 mM
9	60.45 mM	8.25 mM


Substrate variation

 Tab. 2: substrate variation ISPC-concept
 The
 presented

substrate	without ISPC	with ISPC	concept was also successfully applied for
acetophenone	19 %	75 %	selected acetophenone
3-F-acetophenone	21 %	69 %	derivatives and other
4-F-acetophenone	11 %	61 %	non-aromatic substrates
3-CI-acetophenone	8 %	46 %	(Tab. 2). As expected,
4-CI-acetophenone	8 %	65 %	low conversions were
3-MeO-acetophenone	10 %	37 %	obtained without ISPC
4-MeO-acetophenone	4 %	8 %	due to the low, but still
1-cyclohexylethanone	0 %	8 %	over-stoichiometric use
2-pentanone	61 %	53 %	of 250 mM IPA. A simple
2-hexanone	37 %	72 %	addition of 3DPPA
2-heptanone	20 %	78 %	increases product form-
methyl isobutyl ketone	36 %	96 %	ation significantly for
100 mM substrate, 250 mM isopropyl amine, 3 U-mL ⁻¹ lyophilized whole cells, 30 °C; 125 mM 3DPPA for ISPC; 200 mM phosphate buffer pH 7.5		substrates. The enantio-	

Two reactor-concept

Full utilization of the applied substrates can only be acquired by a continuously-operated process concept, which includes a crystallization of the product salt from reaction solution. The reactor is herein coupled to a secondary reactor, which readjust the concentrations of the substrates within the mother liquor after conversion (Fig. 3).

References

- [1] a) F. Guo, P. Berglund, *Green Chem* **2017**, *19*, 333.; b) M. T. Gundersen, R. Abu, M. Schürmann, J. M. Woodley, *Tetrahedron: Asymmetry* **2015**, *26*, 567.
- [2] a) D. Hülsewede et al., European Patent Application 17202282.4, filed on November 17th, **2017.**; b) D. Hülsewede et al., *Eur. J. Org. Chem.*, accepted. DOI: https://doi.org/10.1002/ejoc.201800323
- [3] a) S. A. Kelly et al., *Chem. Rev.* 2018, *118*, 349.; b) I. Slabu, J. L. Galman, R.
 C. Lloyd, N. J. Turner, *ACS Catal.* 2017, *7*, 8263.

Fig. 3: process concept for a coupled two reactor system

Summary

ISPC facilitates higher conversion for various substrates
 two reactor-system is currently developed for a continuous reaction system

Acknowledgements

Financial support by Deutsche Forschungsgemeinschaft (DFG) (project number: LA4183/1-1) is gratefully acknowledged.

