

Rheological Characterization of Hydrogels Based on Polymerized Ionic Liquids (PILs)

<u>J. Claus^{1,2}, A. Jastram², P. Janmey³, U. Kragl^{1,2}</u>

¹ University of Rostock, Department Life, Light & Matter, Albert-Einstein-Straße 25, 18059 Rostock, Germany ² University of Rostock, Institute of Chemistry, Albert-Einstein-Straße 3A, 18059 Rostock, Germany

³University of Pennsylvania, School of Engineering and Applied Science and Cell and Molecular Biology Graduate Group, Philadelphia, PA 19104–6315, USA.

Introduction

Polymeric materials such as hydrogels are used in medical applications like implants, for enzyme immobilization and materials for contact lenses.^[1] Hydrogels are built up by 3D-crosslinked polymeric structures consisting of a monomer and a crosslinker (N,N'-methylenebisacrylamide) (Fig. 1). This covalently crosslinked networks are obtained, and the mechanical properties were investigated.^[2,3]

Synthesis

The highly functionalized polymeric materials can be easily synthesized from a vast selection of monomers (Fig. 2) with the crosslinker Mbis via radical polymerization. To facilitate a wide range of properties and applications, kationic and anionic monomers were chosen.

Fig. 2. Overview of the monomers used within this study $[X^- = CI^-, Br^-; R = H, CH_3]$.

Results and Discussion

storage modulus, elastic part,

G'

G"

Fig. 3. Polymerization tracking measurements of poly(VBImCI) and poly(MAE-SO3) [21±1°C; ω = 0.1 Hz; γ = 1%].

Fig. 5. Strain-sweep measurements on poly(MAE TMA), giving an information about the linear viscoelastic range (LVE) and the start of brittle fracturing behavior at γL . [21±1°C; ω = 0.1 Hz].

solid behavior

loss modulus, viscous part, liquid behavior

 R_1

Fig. 4. Mesomeric radical monomer structures and their corresponding polymerization speed [R1 = H, CH₃; $R_3 = SO_3K$, NMe₃Cl].

	t _c [min]	t_{∞} [min]
poly(VBImCI)	2.5	11.0
poly(MAE-SO ₃)	1.5	23.5
poly(AE-SO ₃)	10.5	10.5
poly(TMA-VB)	38.5	145.0

Fig. 6. Compression curves of poly(MAE TMA) and poly(VB-TMA), giving information about the maximum of compression and the Young's modulus (Y) $[21\pm1^{\circ}C; \omega = 0.1 \text{ Hz}; \gamma = 1\%]$.

References

Fig.

10⁵

Tetramethylethane-1,2-diamine].

[1] Claus, J., Sommer, F. O., Solid State Ionics 314 (2018): 119-128. [2] Deshayes, S., Kasko, A. M., Journal of Polymer Science A: Polymer Chemistry 51 (2013): 3531. [3] Bandomir, J., *Macromolecular Chemistry and Physics* 215.8 (2014): 716-724.

Acknowledgements: Financial support by Bundesministerium für Bildung und Forschung, Germany (project number: 032091 0 B) is gratefully acknowledged.

Scan this for PDF

